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1. INTRODUCTION ___ __ __

Non-linear models arise in many practical applications. Models

based on Michaelis-Menten differential equations are commonly used in

biochemistry, biopharmaceutics, pharmacokinetics and other related

disciplines. These differential equations result in general when com-

partmental models are applied. Linear differential equations usually

suffice for the study of compartmental models with constant rates of

exchange among compartments. However, there are many situations espec-

ially in the study of drug distribution where nonlinearity arises

naturally. Several methods have been proposed in the literature to fit

constants in such nonlinear models. In an earlier paper, Rustagi and

Singh (1977) used difference equation approach to fit one- and two-

compartment models under the assumptions of linear kinetics.

In this paper, the bMichaelis-Menten elimination scheme is

studied using the difference equation approach. The distribution of

the estimates of the resulting rate constants is not easily obtainable

n closed form. Using Monte-Carlo methods, the distribution of these

constants is derived for the special case of normal errors. Similar

methods can be utilized under different distributional assumptions

for errors in the model.

Applications of Michaelis-Menten equations to pharmacokinetics

has recently been made by Wagner (1973) and Sedman and Wagner (1974).
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They obtained estimates of the rate constants by numerical methods but

did not provide the distribution of these estimates. It is well known

that it is not easy to obtain the distribution of estimates which are

obtained through numerical techniques. These distributions are, how-

ever, necessary for statistical analysis, for example, in obtaining the

confidence interval estimates for the rate constants or in comparing

two different rate constants,.

2. MICHAELIS-MNTEN MODELS

In a study dealing with enzymzkinetics, Michaelis and Menten

(1913) provided a model for the following one compartment system,

given by Figure 2.1. tV
IC m -

Figure 2.1

C is the concentration of certain substance in the compartment, K is
m

the rate of output and V is the maximum rate of reaction. This system
m

can be represented by the differential equation

VCd__C - m (2.1)

dt K +Cm

Consider the difference r4uation analog of the equation (2.1) assuming

that the process is observed at times tl*t 2,... ,t. Using the
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approximation for derivatives in the case of unequal time intervals, we

have

c(t ~)-c(t )  V c(t)

ti+l - t i KM + C(t 1 ) (2.2)

Equation (2.2) is simplified in the following form.

C (t i+l)-C (ti ) C(t i+1 )-C(tti) ,

% - ti - tl + V C(t ) + C(t i) ti+ tl 0 . (2 3)

The model for estimating constants K and V is assumed to bem m

K C(ti+ )-C(ti) c(t i+)-CCt i )
-_ + V C(t ) + C(t u(t (2.4)

U+I i  i+ - i

We assume for simplicity that u(t ) are random errors with zero means

2iand variances cy
2

The weighted least-squares solution for K and V are obtained
m m

by minimizing the expression,

n- 1  K c(ti+ )_C(ti) C(t )_(ty 2

1-1i+ ~ 1 t(±)cti

where is the weight for each data point. By taking the derivatives

of equation (2.5) with respect to K and V , we get the normal equations
M m

given in (2.6) end (2.7) which provide the least-squares estimates for

K and V
m M

.t

____________ _________________________•___________

I' ... . . .. . .. . ....- ., . " . -- ',:: ' -- J ' " "- .-tf-"--- ".§-
' '

.... . ..- , -- -- " -...
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-1 (ccti+1)-c(t )12 U-1 (ti+l)-c(t iK I +v V :-C(t ) -m i ,l °i i t+l-ti m il at i ti+l-tt

n-i C(ti) /C(ti±l)-Cti) 2
+ E r ! - (2.6)

i-1 i ti+l-ti

^ n-I C(t ) C(t i+)-Ct4 ) n-I Mt )) 2

S+V E
Km a t i+l-t i  m i- a i

n-i (C(ti))2 C(ti+1 )-C(ti)
+ a • __ 0 (2.7)

i i+l-i

Example

Suppose the time-concentration data of alcohol elimination in

human subject is given in Table 2.1. The data is fitted to (2.4) by
1

using 2 as the weights, we get Km - 2.8021 mM, and

V - 0.0882 mM/min. The ratio V /K is 0.0315 min- 1 . This ratio isa m m

close to the thtocztical approximate first-order rate constant for drug

elimination which is known to be 0.0513 min - , Wagner (1971).

Table 2.1

Time (min) 5.0 48.0 78.0 105.0 135.0 163.0

Concen. (mK) 6.9 4.1 2.7 1.4 0.5 0.1

Note that the distribution of the estimates Km and V , whichIi m
depend non-linearly on C(ti), are not easily obtainable for given n.

Simulation methods are used later to obtain the properties of these

estimates.

--- .. .
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The characteriatics of the two-compartment model vith

)4ichaels-Menten kinetics have been studied by several authors, forexample see Sedman and Wagner (1974). Suppose a drug is injected into
a biological system intravenously. This system can be represented by avo-comparment open model vhere elimination occurs from the first com-
partment. A schematic diagram is given in Figure 2.2 usin nonlinear

kinetics.

kl

CC 2(t)
I.V. I - - 2  (t)

MI v

Figure 2.2

Here C1 (t) and C2 (t) are the concentrations in the two compartments,
k12 and k2 1 are the first-order race constants, and K, V have the same

meaning as before. The mathenmtical model for concentrations results infi the equations (2.8) and (2.9).

dC - -(k21  C I + kl2C2 , 
(2.8)

dC2
dt k2 1C1 - z 

(2.9)

Suppose an experimenter can observe the concentration in only one com-partment. From (2.8) we have

V
-C + k + - . (2.10)

12 2 dt 211
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Substituting (2.10) into (2.9), we get

dC2  dC1  V3
S d.(2.11)dt d t K C1

a 1

Differentiating equation (2.8) once more, we have a second-order dif-

fereutial equation in terms of CV

2Sd2C 1  2+2 dO
2 +d[ (K +C )2(k 2 1 -h 2 ) Vmm + k2Vm(K+Cl)C- 0. (2.12)

dt

Suppose now that the concentration in a given compartment is

observed at equal intervals of time. For notational conveni!-nce we
dO

drop the subscript in C and replace the derivative L by C(t+l) - C(t)

2
and -nc by C(t+2) - 2(t+l) + C(t) to obtain the difference equation

dt

analog to equation (2.12). We have

2 2
[C(t+2)- 2C(t+)+ C(t)]f[Ki+ C(t) I2+ (C(t+1) - C(t) ]{(+ C(t)]I (.

(k2 1 -kl 2 ) -VK } +(t)[K+Ct)k 2 V 0 . (2.13)

The model for estimating the rate constants is

EC(t+2) - 2C(t+1) +C(t) ] [K+ C(t) ] 2 + [C(t+l) - C(t) I {[K+ C(t)J 2

(k2 1 -k 1 2)-V } +C(t)-[K M+ C(t)]k1 2V - u(t) (2.14)

where u(t) is the error term with zero mean and appropriate variance.

Notice that the equation (2.14) is a polynomial with degree

three in parameters K , V8, k12, and k21 and results in a complicated

A

fTi
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estimation procedure. With certain additional assumptions, such as

those of some parameters known, nonlinear least-squares method may be

utilized. The uniqueness of the resulting estimates is still question-

able.

3. ESTIMATION OF RATE CONSTANTS

Several methods of estimation of rate constants in pharmaco-

kinetics models are in comn use. Numerical procedures leading to

techniques using quasilinearization are due to Bellman and Kalaba

(1965). Also computer programs such as NONLIN, by Metzler (1969) which

is based on the modification of Gauss-Newton procedure are commonly

used. We use the differeuce-equation approach discussed earlier for

obtaining the estimates.

Using Runge-Kutta siethod, which is a part of NONLIN program,

'. data are generated from the Michaelis-Menten model (2.1) with a given

j set of values of constants K and V . A sample of 25 observations ism m

generated and each value is increased by a standard normal random vari-

ate. The estimates of V and K are then made using the differencea a

equations model of the Michaelis-Menten equations as in equation (2.4),

The resulting estimates are given in Table I for one hundred such samples.I ~A
The frequency distributions of K and V are given In Tables II

-. A

and I1. Means and standard deviations for K and V are
m m

0.056 - .242
m la

sk = 0.0452 av - 0.0495
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To test the hypotheses that the sample of one hundred ^ and
A

V arise from normal distributions, classical chi-squared test of

goodness-of-fit and Lilliefors test are used, Conover (1971). The

chi-squared values for the samples K and V are

2- 6.454 with 5 degrees of freedom,

22 - 2.516 with 4 degrees of freedom,
U

which are not sigcrficant at 0.05 level.

For Lilliefors ncn-paro'hetric test, the test statistic used is

T - Sup IF(x) - S(x),

where F(x) is the standard normal distribution function and S(x) is

the empirical distribution function. The values have been standardized

using the means and standard deviations obtained above. Absolute values

of (F(x)-S(x)) for both samples are recorded in Table I. The maximum

value for K aoccurs at x - 0.23, where S(x) equals 0.53, F(x) equals

0.59, and T is 0.06. The maximum value for V occurs at x - -0.56,

where S(x) equals 0.35, F(x) is 0.29 so that T equals 0.06. The maxi-

mum value 0.06 also occurs at other points, but at no point does the

absolute difference of S(x) and F(x) exceed 0.06.

The Lilliefors test calls for rejection of our hypotheses at

a - 0.20 if T exceeds its 0.80 quantile. The critical region is

obtained from tables in Conover (1971). The hypotheses are accepted,

and therefore we conclude that the estimates K and V are normally

distributed.
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TABLE 1 10

Km K-.o56)/.45 s(x)-P(x) vm (V-.242)/. 0495 S(X)-F(x)

0.0 -1.24 .02 0.0415 -4.05 .010.0 -1.24 .02 0.1407 -2.05 .0020.0 -1.24 .02 0.1508 -1.84 .0020.0 -1.24 .02 0.1567 -1.72 .0020.0 -1.24 .02 0.1611 -1.63 .0010.0 -1.24 .02 0.1665 -1.53 .003
0.0 -1.24 02 0.1797 -1.26 .030.0 -1.24 .02 0.1829 -1.19 .040.0005 -1.23 .01 0.1864 -1.12 .040.0027 -1.18 .01 0.1875 -1.10 .040.0045 -1.14 .01 0.1882 -1.09 .030.0055 -1.12 .01 0.1883 -1.08 .020.0058 -1.11 .003 0.1892 -1.07 .010.0078 -1.07 .002 0.1895 -1.06 .0040.0100 -1.02 .01 0.1915 -1.02 .0030.010 -1.02 .01 0.1938 -0.97 .0060.0114 -0.99 .01 0.1945 -0.96 .0020.0123 -0.97 .02 0.2020 -0.81 .030.0204 -0.79 .02 0.2037 -0.77 .020.0206 -0.78 .01 0.2039 -0.77 .020.0221 -0.75 .006 0.2044 -0.76 .010.0221 -0.75 .006 0.2056 -0.74 .0090.0225 -0.74 .01 0.2061 -0.73 .0030.0243 -0.70 .002 0.2072 -0.70 .0020.0262 -0.66 .004 0.2095 -0.66 .0050.0295 -0.59 .01 0.2101 -0.64 .010.0299 -0.58 .01 0.2102 -0.64 .010.0305 -0.56 .01 0.2107 -0.63 .030.0309 -0.56 .01 0.2108 -0.63 .030.0318 -0.54 .01 0.2130 -0.59 .040.0325 -0.52 .01 0.2130 -0.59 .040.0332 -0.50 .02 0.2130 -0.59 .040.0344 -0.48 .02 0.2131 -0.58 .060.0357 -0.45 .02 0.2135 -0.58 .060.0362 -0.44 .02 0.2144 -0.56 .06

0.0377 -0.40 .03 02162 -0.52 .050.0379 -0.40 .03 0.2205 -0.43 .04

0.0394 -0.37 .03 0.2210 -0.42 .040.0426 -0.30 .01 0.2217 -0.41 .050.0429 -0.29 .03 0.2232 -0.38 .050.0429 -0.29 .03 0.2264 -0.32 .040.0439 -0.27 .03 0.2329 -0.18 .010.0449 -0.25 .03 0.2330 -0.18 .010.0497 -0.14 .004 0.2330 -0.18 .010.0499 -0.13 .03 0.2350 -0.14 .0060.0501 -0.13 .03 0.2354 -0.13 .010.0503 -0.13 .03 0.2360 -0.12 .0400.0531 -0.06 .01 0.2360 -0.12 .04
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TABLE I (conciued)

K (Km-.056)/.045 S(x)-?(x) V (V -.242)/.0495 S(X)-F(X)
U m

0.0558 -0.00 .01 0.2360 -0.12 .04
0.0567 0.02 .008 0.2375 -0.09 .04
0.0583 0.05 .009 0.2378 -0.08 .04
0.0610 0.11 .02 0.2415 -0.01 .02
0.0662 0.23 .06 0.2435 0.03 .02
0.0667 0.24 .02 0.2440 0.04 .03
0.0668 0.24 .02 0.2445 0.05 .03
0.0668 0.24 .02 0.2450 0.06 .04
0.0670 0.24 .02 0.2487 0.14 .02
0.0674 0.25 .02 0.2539 0.24 .01
0.0678 0.26 .01 0.2573 0.31 .03
0.0689 0.29 .01 0.2585 0.33 .03
0.0699 0.31 .01 0.2595 0.35 .03
0.0740 0.40 .03 0.2601 0.37 .02
0.0758 0.44 .04 0.2625 0.41 .03
0.0764 0.45 .03 0.2673 0.51 .05
0.0769 0.46 .02 0.2675 0.52 .05
0.0805 0.54 .03 0.2707 0.58 .06
0.0806 0.54 .03 0.2710 0.59 .05
0.0824 0.58 .03 0.2741 0.65 .06
0.0827 0.59 .03 0.2747 0.66 .05
0.0841 0.62 .03 0.2759 0.68 .050
0.0844 0.63 .02 0.2761 0.69 .05
0.0853 0.65 .02 0.2774 0.72 .04
0.0880 0.71 .03 0.2784 0.74 .03

Y 0.0885 0.72 .02 0.2788 0.74 .03
0.0895 0.74 .02 0.2809 0.79 .02
0.0906 0.77 .01 0.2810 0.79 .02
0.0906 0.77 .01 0.2812 0.79 .02
0.0909 0.77 .01 0.2818 0.80 .008
0.0925 0.81 .001 0.2824 0.82 .004
0.0946 0.85 .002 0.2852 0.87 .008
0.0952 0.87 .01 0.2873 0.92 .01
0.0984 0.94 .006 0.2884 0.96 .006
0.0994 0.96 .001 0.2892 0.95 .01
0.0998 0.97 .01 0.2892 0.95 .01
0.1001 0.98 .02 0.2914 1.00 .009
0.1028 1.04 .01 0.2923 1.02 .01
0.1043 1.07 .02 0.2974 1.12 .003
0.1090 1.17 .01 0.3006 1.18 .001
0.1137 1.28 .01 0.3032 1.24 .003
0.1138 1.28 .01 0.3052 1.28 .001
0.1143 1.29 .01 0.3057 1.29 .02
0.1169 1.35 .01 0.3058 1.29 .01
0.1178 1.37 .02 0.3094 1.36 .02
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TABLE I (contin~ued)

K (K -.056Y.045 S(x)-F(x) V (V -.242)1.0495 S(X)-F(X)
m a

0.1201 1.42 .02 0.3114 1.40 .02
0.1206 1.43 :03 0.3161 1.50 .02
0.1222 1.46 .04 0.3233 1.64 .01
0.1232 1.49 .04 0.3248 1.67 .02
0.1303 1.64 .04 0.3250 1.68 .03

10.1311 '..66 .04 0.3283 1.74 .04
0.1322 1.69 .05 0.3333 1.84 .04

- ~ ...... ---- ... 1* -. - -.- - .
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TABLE II

FREQUENCY DISTRIBUTION OF xa

Cumulative
K Relative Relative
m Frequencies Frequencies Frequencies

0 8 0.08 0.08

0.00-0.02 10 0.10 0.18

0.02-0.04 20 0.20 0.38

0.04-0.06 13 0.13 0.51

0.06-0.08 14 0.14 0.65

0.08-0.10 19 0.19 0.84

0.10-0.12 9 0.09 0.93

0.12-0.14 7 0.07 1.0

Total 100 1.0
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TABLE III

FREQUENCY DISTRIBUTION OF VM

Cumulative
Relative Relative

Km Frequencies Frequencies Frequencies

0.00-0..17 6 0.06 0.06

0.17-0.20 11 0.11 0.17

0.20-0.23 24 0.24 0.41

0.23-0.26 20 0.20 0.61

0.26-0.29 23 0.23 0.84

0.29-0.32 11 0.11 0.95

0.32-0.35 5 0.05 1.0

Total 100 1.0

ii -,-- - - -
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